

Arduinoでタミヤの模型を思いどお りに動かしてみよう

つくれば工房 2013年10月19日 (遠藤一太)

- 1. 自分のPCでArduinoのスケッチ(プログラムのこと)が描ける。
- 2. 反射光センサーの値をPCに表示することができる。
- 3. 「Hブリッジ」 ICを用いて、タミヤの模型用モーターの回転 を制御することができる。
- 4. センサーの値に応じて、モーターの回転方向を変化させる ことができる。
- 5. ライントレーサーカーの製作を想定して、便利なスケッチ集 を作れる。

 PCにArduinoの開発環境をセットアップする。
 単手持ちのPCに、必要なファイルをUSBからコピー。(または Arduino.ccのホームページよりダウンロード)。
 単最新の安定運用バージョンはArduino1.0.5 だが、それ以前の物でも良い。
 USBケーブルでPCとArduinoマイコンボードを接続
 ごのとき、「新しいハードウェアが検出されました」というメッセージと デバイスドライバーのインストール手順に関する質問がでてくる場 合がある。ドライバーは配布したAruduino-1.0.5フォルダーの driversの中にある。
 新しいボードの場合基板上のLEDが点滅する。

「新規ファイル」ボタン(左から3番目)を押して上記内容を入れる。(二 重斜線(//)の行は注釈なので不要)。 ファイルメニューから名前を付けて保存する。例えば mytesto 「マイコンボードに書き込む」(2番目の右向け矢印)を押すとArduino ボードにスケッチが転送されて、実行される。転送中はArduinoボードの LEDが瞬く。 (ここでは、何もしないという仕事をする。電源ランプだけがついた状態)

両端の青線と赤線のそばの25点は互いに横につながっている

上記の内容を追加したら、ファイルメニューから名前を付けて保存する。例 えば myTKB1

アップロードボタン(2番目の右向け矢印)を押すとArduinoボードにスケッチが転送されて、実行される。

再び実行するためには、ボード上のリセットボタンを押す。

上記のように書き換えたら、5番目ボタン(下向け矢印)をク リックする。これで、上書き保存された。 アップロードボタン(2番目の右向け矢印)を押すとArduino ボードにスケッチが転送されて、実行される。 loop部分に書いた内容が、いつまでも繰り返し実行される。

LEDの明るさを変える


```
int v=100;
void setup() {
    pinMode(3,OUTPUT);//3番ピンを出力用に設定
    }
void loop() {
analogWrite(3,v);//3番ピン電圧をvの値に応じて0~5Vに。
    delay(500); //500ミリ秒(0.5秒)待つ
    v=v+10;
    if (v>255) v=0;
}
```

出力ピン番号3には~3と書かれている。これには、5v以下の任意電圧を 出すことができる。analogWrite 命令で0から255段階の電圧を指定する。 (~5,~6,~9,~10,~11番ピンも同様) 接続2 (反射センサー)

Made with 🗗 Fritzing.org

反射センサーの値をPCに表示

int sensorPinA=0;

```
void setup(){
Serial.begin(9600);
}
```

void loop(){Serial.println(analogRead(sensorPinA));
delay(1000);

```
上記スケッチをArduinoに転送してから、PCのArduino開発window
の右端(虫眼鏡)ボタンをクリックするとモニターが現れる。右下の窓
に9600 baudと上記の通信速度の値が合っていればUSBケーブルか
ら受け取ったデータが表示される。
センサーから3mmぐらいの反射物の黒白によって、表示値が変わる。
次のステップで使用するので、値の変化する範囲を覚えておく。
```

第三歩 タミヤ模型の標準モータを動かす

 ※使用するのは、直流(ブラシあり)モータ。電圧3∨以下。
 ※まず電池(単三電池2個直列接続済み)をモーターに 直接つないでみる。電池ボックスのスイッチを入れて回 転方向を調べる。接続の極性を変えると逆転するはず。
 ※ブレドボードにHブリッジモジュール(TB6612FNG DualMotor Driver Carrier)を差し込み、図のように配線 する。(これはマイコンの指令通りに、モーターの電流の 大きさや方向を制御するための回路)

使用するモータードライバーの機能

※ TB6612FNG DualMotor Driver Carrier のピン説明
 ※ AIN1(BIN1) A(B)前進指令(IN1=HIGH,IN2=LOW)
 ※ AIN2(BIN2) A(B)後進指令(IN1=LOW,IN2=HIGH)
 ※ AO1(BO1) モーターA(B)へ接続
 ※ AO2(BO2) モーターA(B)へ接続
 ※ PWMA(PWMB)モーターA(B)の速度設定信号
 ※ STBY 待機信号 (HIGHにしなければ動作しない)
 ※ VCC 論理回路用供給電圧
 ※ VMOT モーター用プラス電源電圧
 ※ GND アース=電源のマイナス端子に接続
 ※ 静止命令 空転 (IN1=LOW,IN2=HIGH)

パーツ

Made with 🚺 Fritzing.org

結線対応表			
Arduino Pin	MotorDriver Pin		
	(奋亏は表から見て左トン	か1、 石下か8、 石上か9、 左上か16	
となるように、マークを起点として逆時計回りにつける)			
D4	AIN1 (14)		
D2	AIN2 (15)		
D3	PWMA (16)		
D5	STBY (13)		
D7	BIN1 (12)		
D8	BIN2 (11)		
D9	PWMB (10)		
5 V	Vcc (2)		
GND	GND (1,8,9)	モーター用電池の一極へ	
	VMOT (7)	モーター用電池の+極へ	
	AOUT1 (3)	モーターA1へ	
	AOUT2 (4)	モーターA2へ	
	BOUT2 (5)	モーターB2へ	
	BOUT1 (6)	モーターB1へ	
Ao		センサーAの出力(中央ピン)	
A1		センサーBの出力(中央ピン)	

モーターの正転と逆転テスト

/* Test of Motor Driver TB6612FNG Dual Motor Driver by POLOLU ******* 2013/9/26 I. Endo *****/ int LED=13; int AIN1=4; int AIN2=2; int PWMA=3; int STBY=5; int velocity=100;//0と255の間の数値

```
void setup(){
    pinMode(LED,OUTPUT);
    pinMode(AIN1,OUTPUT);
    pinMode(AIN2,OUTPUT);
    pinMode(PWMA,OUTPUT);
    pinMode(STBY,OUTPUT);
    digitalWrite(STBY,HIGH);
}
```

void loop(){

//mae digitalWrite(LED,HIGH); digitalWrite(AIN1,HIGH); digitalWrite(AIN2,LOW); analogWrite(PWMA,velocity); delay(3000); //ushiro digitalWrite(LED,LOW); digitalWrite(AIN1,LOW); digitalWrite(AIN2,HIGH); analogWrite(PWMA,velocity); delay(3000);

}

第四步

センサーの値に応じて モーターAを前進/後退させる。自分で便利な関数を定義

int LED=13;
int AIN1=4;
int AIN2=2;
int PWMA=3;
int STBY=5;
int velocity=100;//oと255の間の数値

```
void setup(){
  pinMode(LED,OUTPUT);
  pinMode(AIN1,OUTPUT);
  pinMode(AIN2,OUTPUT);
  pinMode(PWMA,OUTPUT);
  pinMode(STBY,OUTPUT);
  digitalWrite(STBY,HIGH);
}
```

```
void loop(){
if(analogRead(0)>512)
AFoward(velocity);
else ABackward(velocity);
delay(1000);
```

```
//以下は自分で定義した関数
void AFoward(int v){
digitalWrite(LED,HIGH);
digitalWrite(AIN1,HIGH);
digitalWrite(AIN2,LOW);
analogWrite(PWMA,v);
```

```
}
```

void ABackward(int v){
 digitalWrite(LED,LOW);
 digitalWrite(AIN1,LOW);
 digitalWrite(AIN2,HIGH);
 analogWrite(PWMA,v);

次のステップは?

- ■タミヤの標準工作部品を組み合わせて、電池で動く車を作る。
- ⊠左右の車輪が独立にモーターで動く構造にする。
- ☑車体の前部にセンサーを2個取り付ける。
- MArduino+ブレドボード+電池を車に固定する。
- ☑用意したスケッチをarduinoに転送し、センサーの値に応じて、進行方向を変えながら、黒い線上を自動的に走るように工夫する。(ライントレーサー)

さらに次のステップは? ー>例えば無線コントロールを併用。

※ 入門書
※ 公式HP
※ 電子工作関連物品の入手先
※ スイッチサイエンス
※ 秋月電子通商
※ 共立電子
※ Digikey
※ 松本無線(広島市中区銀山町)
※ エディオン広島本店地下2階

Thanks for ioining us!

毎週土曜日に各自が作品づくりを楽しんでいます。12月(1月?)には作品発表会をしたい。 Marduino等の購入希望者はお知らせください。 MBeeDuino(中谷寿洋氏開発)の後継ボードを「つくれ ば工房」とAdwin社で共同開発準備中。仕様に関するご 意見を頂ければ幸いです。

